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TECHNICAL NOTE

Atsuhiko Banno,1 M.Eng.

Estimation of Bullet Striation Similarity Using
Neural Networks

ABSTRACT: A new method that searches for similar striation patterns using neural networks is described. Neural networks have been developed
based on the human brain, which is good at pattern recognition. Therefore, neural networks would be expected to be effective in identifying striated
toolmarks on bullets. The neural networks used in this study deal with binary signals derived from striation images. This signal plays a significant
role in identification, because this signal is the key to the individuality of the striations. The neural network searches a database for similar striations
by means of these binary signals. The neural network used here is a multilayer network consisting of 96 neurons in the input layer, 15 neurons in
the middle, and one neuron in the output layer. Two signals are inputted into the network and a score is estimated based on the similarity of these
signals. For this purpose, the network is assigned to a previous learning. To initially test the validity of the procedure, the network identifies artificial
patterns that are randomly produced on a personal computer. The results were acceptable and showed robustness for the deformation of patterns.
Moreover, with ten unidentified bullets and ten database bullets, the network consistently was able to select the correct pair.
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A method is proposed that searches for similarities in striation
patterns of fired bullets using neural networks. Neural networks are
modeled after the structure of the human brain, and the human brain
has an advantage over a computer in terms of pattern recognition
(1). Therefore, it is likely that neural networks might be suitable for
identifying striations such as toolmarks and impressions on fired
bullets.

Neural networks have great potential for use as an auto-
identification system (2). One of the most important functions of
an automated rifling mark identification system is the time spent by
the forensic scientist. In the case of an auto-system, some bullets
can be selected for inspection by a comparison microscope. Thus,
it is not the auto-system but a forensic scientist that makes the final
decision in a forensic identification. An ideal algorithm could be
used to eliminate bullets that do not need to be compared, and could
select likely candidate bullets that have striation patterns that are
similar to the striations on the target bullet.

The question arises as to how to estimate these similarities. A
number of attempts have been made to view the estimation as a prob-
ability and a statistics problem (3,4). The objective of the present
paper is to utilize neural networks to estimate similarities of stria-
tions.

Another reason to adopt a neural network is that it is robust with
respect to changes of patterns. In actual cases, bullets are some-
times deformed by collision that might cause a small deformation
in the striation. In addition, a perfect correspondence of two striation
patterns is rarely encountered, even if the two are on nondeformed
bullets and have been fired from the same firearm, because a minute
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difference in illumination conditions or the position of the bullet on
a stage causes an apparent change in the striation pattern. As de-
scribed later in this paper, neural networks appear to overcome these
obstacles.

A commercial auto-system for bullet identification, IBIS is cur-
rently available, but the algorithm proposed here using neural net-
works bears no relation to IBIS.

Character Extraction

The data inputted directly into neural networks are not an image
but a numerical signal, which is derived from the striations on a
bullet. The input signal should reflect some characteristics of the
striation. This means the identification of the signals serves for that
of the striation itself. In this section, the method used to produce the
signals is explained. The procedure involves character extraction.

An image of a striation is recognized as a set of bright and dark
lines. Fortunately, the texture of a striation is usually uniform along
the direction of the scratch. To reduce the influence of noise, the
brightness values of pixels along the scratch direction are averaged.
Consequently, although an examiner perceives depth/contour vari-
ations through gradations in brightness caused by side lighting, in
the case of a neural network analysis, two-dimensional information
(an image) is converted into a one-dimensional signal. This signal is
then converted into a suitable signal for neural networks; the length
of the signal is shortened and converted into a binary signal. The
length of the original signal equals the number of pixels on an image
(about 1200 pixels in this study). On the other hand, as described
later, neural networks deal with signals of a 128-bit length. There-
fore, the original signal is divided into 128 blocks. If a block has a
total brightness value over a threshold, the block is given a score of
“1.” If the total value of the block is below the threshold, the block
is given a score of “0.” The threshold is defined empirically. This
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FIG. 1—PC screen of character-extraction software that derives a binary signal with a 128-bit length from an image of a striated bullet land impression.

process converts the original signal into a binary signal of 128-bit
length.

Figure 1 summarizes the above procedure and shows a computer
screen image from the character-extraction software. A digital im-
age of a striation is initially displayed on the background window on
the screen. A high-pass filter (5) is applied to the digital image. By
observing the screen and dragging the mouse, the examiner creates
a rectangle on the striation image. The software then averages the
brightness values of the pixels included in the rectangle along the
horizontal direction. The averaged brightness value forms a one-
dimensional wave signal. The signal is displayed graphically at the
right side on the window.

The one-dimensional wave signal is then converted into a binary
signal that has a 128-bit length. This converted signal is shown as
stripes in the foreground window in Fig. 1.

Here an original image of a land impression can be converted
into a binary signal suitable for a neural network.

Neural Networks Model

Generally, there are two types of neural networks: a Hopfield
network and a multilayer network (MLN). In this paper, the latter
is used. The MLN has a structure of several layers. Each layer
consists of a number of nodes called neurons. Each neuron in a
layer connects to all neurons of the next layer, and no one neuron
connects to any other neurons in the same layer.

The structure of the MLN model is illustrated in Fig. 2. The model
used in this study contains three layers where the bottom layer is
the input layer and the top layer is the output layer. There are 96

FIG. 2—Structure of the multi-layer network model with two input layers.

neurons in the input layer, 15 neurons in the middle layer, and only
one neuron in the output layer. The neurons in the input layer are
divided into two blocks: input blocks A and B. Both input blocks
contain 48 neurons.

There are two patterns to be compared in terms of their similarity.
Two patterns are inputted into the two input blocks A and B sepa-
rately. During a learning process, the network is modified so that it
outputs a value of near 1 with similar input patterns and a value of
near 0 with nonsimilar patterns.

Figure 3 describes the function of a neuron. All neurons of the
middle and output layers have the same function. Assuming that a
layer (the bottom or middle layer) has N neurons and the output
value of each neuron is xn(n = 1,2. . . N), the inputted vector of a
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FIG. 3—Function of a neuron. A neuron in the middle (output) layer is
connected to all neurons in the input (middle) layer.

neuron in the next layer (the middle or top layer respectively), �xk ,
can be described as

�xk = (x1, x2, . . . . . . , xN , −1)

Each element of �xk is multiplied by a coefficient. A set of these
coefficients is defined as a weight vector described as

�wk = (w1k, w2k, . . . . . . , wNk, bk)

bk denotes “bias.” The output value of the neuron, sk , can then be
described as

sk = f ( �wk �xk) = f

(
N∑

i=1

wik xk − bk

)

Generally, the sigmoid function is used as the above function f :

f (a) = 1

1 + e−a

The output value of the neuron in the output layer represents the
output value of the neural network.

Learning

Learning involves modifying all weight vectors in order to output
a desired value at the neuron in the output layer. This desired value
is referred to as a “teaching signal.”

For defining the teaching signals, the input layer consists of two
blocks as described above. The two patterns to be compared are
inputted into each block, which contains 48 neurons. Learning pat-
terns are binary signals with a 48-bit length. Each signal consists
of only one element with a score of “1” and 47 elements with a
score of “0.” That is, in the learning process, only one neuron in
each block has an input value of “1” (this neuron is referred to as
an “excited neuron”), and the other 47 neurons in each block have
an input value of “0.” A teaching signal is given in the following
form T (i, j):

T (i, j) = exp

{
− (i − j)2

σ 2

}

for
xk = 1 (if k = i), xk = 0 (if k �= i) at the input block A
xk = 1 (if k = j), xk = 0 (if k �= j) at the input block B

That is, if two patterns are the same, the output value of this network
is “1.” In addition, the closer together two positions of the excited

FIG. 4—Definition of a teaching signal. The exponential function gives
high score if two positions of excited neurons are close, and low score if
two are not close.

FIG. 5—Example of comparison of patterns with three excited neurons.
Although the MLN learned the pattern with only one excited neuron, it can
afford an appropriate score in comparison with multi-excited neurons.

neurons are, the closer to “1” the output value will be. On the other
hand, the further apart the two positions are, the closer to “0” is the
value (Fig. 4).

In conclusion, the goal of this MLN is to output a high score with
similar signals and to output a low score with nonsimilar signals.

Two questions arise: Is learning with only one excited neu-
ron suitable for the recognition of striations? Can this algorithm
function with several excited neurons? The answer is indicated in
Fig. 5. This is a result of a comparison of patterns with three excited
neurons in both input blocks. The identical neural network with the
above learning gives the score of 0.926.

Simulation

The validity of the MLN is discussed in this section. Before using
actual bullets, the MLN was used to identify a number of artificial
patterns produced at random by a PC. The artificial patterns have
128 elements. In the previous section, the MLN model has only 48
input elements. On the other hand, a characteristic signal derived
from a striation image has 128 elements, as shown in the character
extraction section. A signal with 128 elements is then divided into
five parts (Fig. 6). Consequently, the MLN outputs the scores of the
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FIG. 6—Division of whole pattern for the MLN. A 128-bit signal is
divided into five blocks.

FIG. 7—Four systems to produce deformed patterns. (A) All elements
transfer to 3-element backward. (B) Elements on a certain part ( = 20%)
disappear. (C) Elements tend to gather around the center. (D) Elements
transfer on a sine wave.

five parts independently. The final score for similarity is defined as
the summation of the five output values.

A PC is used to produce 300 artificial patterns. These patterns
are stored as a database. Unidentified patterns are slightly deformed
database patterns. The deformed patterns are compared with the
database. According to the output score, the MLN determines the
ranking of all patterns in the database. A deformed pattern resem-
bles the original. Therefore, if the original pattern ranks high, this
simulation is proved successful.

The deformed patterns are produced on the following four sys-
tems (Fig. 7);

(A) All elements transfer to 3-element backward.
(B) Elements on a certain part (= 20%) disappear.
(C) Elements tend to gather around the center.
(D) Elements transfer on a sine wave.

A sample of an original pattern and its deformed patterns is shown
in Fig. 8. The results of the simulation are also shown in Fig. 9. The
latter figure shows the ranking of the original patterns when the
MLN is used to compare deformed patterns with the database. In
deformed systems (A), (C) and (D), over 91% of the original patterns
were ranked within the top five. Over 96% of the patterns were
ranked within the top ten. The percentage of the patterns that failed
within the top 20 was only 2%. This indicates that if an examiner
searches at least 20 striations in the 300 database striations, he

FIG. 8—Example of original patterns. Deformed patterns by the four
systems are shown.

FIG. 9—Result of simulation with 300 artificial patterns. In the deforma-
tion system (A), (C) and (D), over 90% of the original patterns were ranked
within the top five. On the other hand, only 85% of the original patterns
were ranked within the top ten.

should be able to find the answer with a probability of more than
98%.

On the other hand, the accuracy of the MLN was worse for the
deformed system (B) than for the others. Only 85% of the original
patterns were ranked within the top ten and 7% patterns failed to be
included in the top 20. The deformed system (B) erased 20% of the
elements of a pattern (= 26 elements). In many cases, many excited
neurons corresponding to failure patterns are located in this erased
part.

In this simulation, the use of only one striation was the cause of
the above results. In fact, the probability of bullet identification will
be higher, because a bullet typically contains several striations. This
simulation brings validity to the MLN and the learning process. In
addition, the MLN, which can shorten the run-time of an inquiry,
is robust in terms of identifying changes of patterns.

Experiments

In this section, the retrieval of actual bullets using the MLN is
demonstrated. Ten firearms (9 mm Ruger) were used in this exper-
iment, and two bullets were fired from each firearm. One of each
pair is reserved as the database (Bullets A′ ∼ J′) and the other was
assumed to be an unidentified bullet (Bullets A ∼ J). Bullets A and
A′ are fired from the same firearm. Similarly, B and B′ are fired
from the same firearm.
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TABLE 1—All results of experiments which identified ten bullets with the ten database bullets. Diagonal elements are the scores with two bullets from the
same firearm. A score at the diagonal is the highest in each row.

A′† B′ C′ D′ E′ F′ G′ H′ I′ J′

A∗ 1.97 0.88 1.00 0.97 0.88 0.65 1.43 1.27 0.83 1.25
B 0.81 3.24 0.94 1.09 0.74 0.67 1.15 0.91 0.86 1.02
C 1.53 1.20 2.02 1.06 1.24 1.07 0.85 1.05 0.90 1.05
D 1.04 1.30 0.84 1.96 0.60 0.92 1.19 0.55 0.65 1.22
E 0.94 0.62 1.13 0.39 1.78 0.96 0.50 0.48 0.69 1.38
F 0.72 0.50 0.45 0.37 1.15 2.43 0.68 1.10 0.59 1.24
G 0.86 1.02 0.83 0.78 0.73 0.58 2.68 0.73 0.60 0.92
H 0.83 0.83 0.81 0.53 1.44 0.58 0.62 2.01 0.55 0.90
I 1.34 0.85 1.05 1.13 1.13 0.96 0.85 0.89 2.65 1.28
J 0.67 0.76 1.14 0.61 1.03 1.17 0.72 0.58 0.81 3.76

∗ A ∼ J: Unidentified bullets.
†A′ ∼ J′: Database bullets.

Each bullet has six land impressions. Therefore, the total score
of the six impressions is used as the index of similarities of a bullet.
All the results are given in Table 1.

Considering the unidentified bullet “A,” all scores of Bullet A
compared with the database can be found in row A in Table 1. The
neural network afforded the highest score in comparison with A′.
The neural network judged that Bullet A′ is the most similar to
Bullet A in the database.

Considering other unidentified bullets, it can be seen that the
diagonal components in Table 1 provide the highest score in each
row. The diagonal component represents a pair of bullets from the
same firearm. The results show that the neural network selected the
right bullet from the database.

Conclusions

Neural networks are easily used to identify binary signals. The
algorithm developed here was effective for the identification of bul-
lets and was able to identify deformed striations. Moreover, it is not
necessary to adjust strictly the location of bullets obtained from an
image of a land impression, indicating that this could significantly
shorten the time needed for an inquiry. Naturally, this algorithm can
be used for non-firearm-related striation toolmarks as well. It would
also be interesting to see if neural networks could be used effectively
in the analysis of nonstriated compression/impression toolmarks.

However, further investigation concerning the use of a neural
network for identifying striated toolmarks will be needed. The main

goal of this study was to develop a new method for estimating
similarity. A much higher number of bullets will be needed for the
validation of this algorithm. If the database contains more bullets,
there is no guarantee that the MLN will be able to select the right
answer correctly.

Finally, a decision on a bullet identification must be made by
a forensic scientist. The aim of an automated comparison system
is to reduce the labor involved for a scientist. Based on this, a
number of algorithms should be used, and these should be part of
an automated system.
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